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Abstract

Iodonium-ion promoted glycosylations in 1,4-dioxane/toluene with galactosyl donors having an electron-
donating neighboring group participating functionality at C-4 give exceptional high o-anomeric selectivities.
© 1999 Elsevier Science Ltd. All rights reserved.

The last 10 years have witnessed a dramatic improvement in the methods used for complex oligosac-
charide assembly.! Many new leaving groups for the anomeric center, which can be introduced under
mild reaction conditions and are sufficiently stable to be purified and stored for a considerable period of
time, have been developed. Convergent synthetic strategies enabling the convenient assembly of complex
oligosaccharides from properly protected building units, involving a minimum number of synthetic steps,
have become available. Methods for solid-phase oligosaccharide synthesis have been reported and these
procedures shorten oligosaccharide synthesis by removing the need to purify intermediate derivatives.
However, all these developments are off-set by the difficulties of stereoselective introduction of 1,2-cis
glycosides.

Recently, we reported’ that iodonium-ion mediated glycosylations of thioglucosides in 1,4-
dioxane/toluene give significantly higher -anomeric selectivities compared to similar couplings in
1,2-dichloroethane (DCE)/diethyl ether (1/5, v/v). It was proposed that this effect is derived from the
superior donating effect of 1,4-dioxane and the relatively low polarity of the solvent mixture. Here, we
report parameters for the reliable introduction of (-galactosides.

N-Todosuccinimide (NIS)/trimethylsilyl triflate (TMSOTf) promoted glycosylation’ of la with 2
in 1,2-dichloroethane (DCE)/diethyl ether (1/5, v/v) gave disaccharide 3a as a mixture of anomers
(o/B=1.2/1) (Table 1).* A slightly higher anomeric selectivity (ot/B=2.2/1) was obtained when the
same glycosylation was performed in 1,4-dioxane/toluene. The t-anomeric selectivity could be further
improved by using iodonium dicollidine perchlorate (IDCP) as the promoter.2-

Despite the higher -anomeric selectivity in the new solvent mixture, the results are far from being
satisfactory. In general, couplings with galactosyl donors give significantly lower anomeric outcomes
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Table 1
Glycosylations of galactosyl donors 1a—11 with 2
RO OBn o OH RO OBn
% X && -
BnO SEt 4 o - BrOo
BnO o o O
1a-l : X° a1 X \%‘
o
‘3<o
Diethyl ether/DCE (5/1, v/v) 1,4-Dioxane/Toluene (3/1, v/v)
R NIS/TMSOTf [ IDCP NIS/TMSOTf l IDCP
a/p Ratio of 3a-31 (Yield %)
a CH,CH; 1.2/1 (83) 2.1/1 (77) 2.2/1 (91) 2.6/1 (74)
b CH, 1.4/1 (78) 1.6/1 (75) 2.3/1 (50) 2.9/1 (83)
c H 1/1.9 (65) 1/1.8 (53) 1.7/1 (68) 2.0/1 (62)
d COCH, 3.6/1 (74) 6.0/1 (62) 7.2/1 (76) 14/1 (68)
e COC4H; 9.5/1 (79) 12.5/1 (66) 17/1 (72) 321 (74)
f CH,CF; 2.3/1 (58) *
| g coccl, 4.5/1 (72) *
h COCF; 3.0/1 (71) *
i COCH (p-NO,) 14/1 (87) *
j COCMe; 16/1 (74) *
k COC,H {p-CH;) 18/1 (82) *
1 COC4H (p-OCH;) 33/1 (85) only o (75)

* Glycosylation which were too sluggish when promoted with IDCP

than glycosylations with similarly-protected glucosyl donors.® One possible explanation of the low
anomeric selectivities in the galactosyl series may be unfavorable steric effects of the axially orientated
substituent at C-4. To minimize these influences, glycosylations were performed with the 4-O-methyl
derivative 1b.” Coupling 1b with 2 in the presence of NIS/TMSOTTf or IDCP in DCE/diethyl ether (1/5,
v/v) afforded disaccharide 3b with modest anomeric selectivity, whereas coupling in 1,4-dioxane/toluene
gave the same disaccharide with a slightly higher ot-anomeric outcome. When the same glycosylations
were performed with glycosyl donor 1c¢, which has no protection at C-4, slight preferences for the B-
anomer were observed. These experiments indicate that the bulkiness at C-4 of a galactosyl donor has
only a marginal effect on the anomeric selectivity.

Several reports® have highlighted that the nature of a protecting group remote to the anomeric center
may influence the stereochemical outcome of glycosylations. For example, it has been postulated® that
ester-protecting groups at C-4 of fucosyl donors can perform remote neighboring group participation to
give glycosides with high ot-anomeric selectivities.

Galactosyl donors 1d and le, which have, respectively, an acetyl and benzoyl ester at C-4, were
coupled with 2 to probe possible inductive, through-bond or neighboring group participating effects
arising from C-4 of galactosyl donors. As can be seen in Table 1, the ester functionalities significantly
increase the anomeric selectivities and very promising results were obtained with 4-O-benzoylated
derivative le especially when 1,4-dioxane/toluene was used as the solvent.
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Table 2
Glycosylation of 4-7 with 4-O-(p-anisoyl) donor 11 in the presence of NIS/TMSOTf
o/
BzO OH 0Bn o AcO OAc
o HO o ' ° Gh )
BzO OMe Bn0O o AcO

Bz0 BnO ome ! HO

fo) OAc
4 5 6 /r 7

| 3 | 5 | DiethyletherDCE | 2
s

5 |6 | DicthylctherDCE |

To reveal the mechanism of a-galactosylation, we prepared the glycosyl donors 1f-h and used these
compounds in NIS/TMSOTf-promoted glycosylations in 1,4-dioxane/toluene with acceptor 2. The 2,2,2-
trifluoroethyl (f), trifluoroacetyl (g) and trichloroacetyl (h) share in common their strongly electron-
withdrawing properties but will not perform neighboring group participation during glycosylations. !
The results summarized in Table 1 (f~h) show that, in each case a modest x-anomeric selectivity was
obtained. It can be concluded that the electron-withdrawing nature of a protecting group at C-4 of a
galactosyl donor has only a marginal effect on the anomeric ratio of a glycosylation. Therefore, it is
reasonable to assume that an O-acetyl or O-benzoyl at C-4 of a galactosyl donor can perform remote
neighboring group participation during a glycosylation, which improves o-anomeric selectivity.

Based on these results, it was anticipated that ester functionalities with general RPCOO structure,
where RP is an electron-donating moiety, will be an effective neighboring group participant and as a
result should give high &t-anomeric selectivities. To confirm this postulate, we synthesized donors with an
O-nitrobenzoyl (1i), O-pivaloyl (1j), O-toluoyl (1k) and O-p-anisoyl (11) moiety at C-4. As illustrated in
Table 1 (i-1), more electron-withdrawing p-nitrobenzoyl group (1i) gave a lower anomeric selectivity than
the benzoyl group (1e). On the other hand, the pivaloyl (1j), p-toluoyl (1k) and p-anisoyl (11) containing
derivatives gave higher o/B-ratios and the best results were obtained with the most electron-donating
p-anisoyl moiety. These results strongly indicate that a 4-O-acyl protecting group of a galactosyl donor
can perform neighboring group participation and derivatives with strongly electron-donating substituents
are the most effective ones.

The glycosyl donor 11 was used for the synthesis of various disaccharides. In all cases, excellent
anomeric stereoselectivities were achieved especially when 1,4-dioxane/toluene was used as the solvent
mixture (Table 2).

In conclusion, we have shown that the a-selectivity in glycosylations with D-galactosyl donors can
be significantly improved by using a neighboring group participating-functionality at C-4 and the best
results were obtained with ester functionalities of general RPCOO structure, RP being an electron-
donating moiety. The o-selectivity can be further improved if 1,4-dioxane/toluene is used as the reaction
solvent. Probably, this donating solvent system stabilizes the oxo-carbenium ion intermediate form during
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neighboring group participation. In some cases, the yields in the new solvent mixture were slightly lower
than the yields for the same glycosylations in diethyl ether/DCE.
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